UNDERGROUND NATURAL GAS STORAGE-INTEGRITY & SAFE OPERATIONS

Overview of White Paper Prepared for:

American Petroleum Institute, American Gas Assoc. and Interstate Natural Gas Assoc. of America

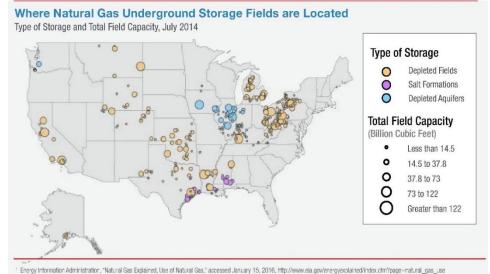
Andrew Theodos PHMSA Workshop, Denver, Colorado July 14, 2016

Background

- API Recommended Practice 1170 and 1171 initiatives.
 - Industry and government teams to develop consensus standards
 - 1170 membership 7 operators, 6 engineering & geological firms and reps from FERC, PHMSA, MS and TX
 - 1171 membership 13 operators and reps from FERC, PHMSA, CA, KS, MI, and PA
 - Started March 2012
 - Published in September 2015
 - Voluntary consensus standards
- Industry work following the API 1170 and 1171 development
 - Starting effort to align existing integrity efforts with the recommended practices

Background cont.

- Establishment of Joint Industry Task Force (JITF)
 - Response to Aliso Canyon incident
 - 15 storage operators
 - American Petroleum Institute (API), American Gas Assoc. (AGA) and Interstate Natural Gas Assoc. of America (INGAA)
- INGAA filed petition in Jan. 2016 to have API 1170 & 1171 incorporated into Federal Regulations (Docket No. PHMSA-2016-0024)
 - Petition would "convert" a voluntary recommended practice into a regulation
 - Have a comprehensive, standardized set of integrity management practices
- July 2016 white paper
 - Enhance technical understanding and context of API 1171 and other topics on well integrity
 - http://www.energyinfrastructure.org/energy-101/natural-gas-storage



US Storage Assets

- Approximately 400 storage fields
- Total of about 17,500 storage wells
- 1st storage field developed in 1916

by PHMSA's Part 192 regulations

- 4 basic physical components
 - Compressor station
 - Pipelines
 - Wells
 - Reservoir

Storage field compressor station and pipelines facilities already covered

SOURCE: EIA Energy Mapping System: EIA-191 Monthly Underground Gas Storage Report July 2014.

 INGAA's petition would bring the last 2 components (wells and the reservoir) under PHMSA

NOTE: that the map includes both active and inactive fields.

White Paper- Storage Well Integrity

Goals of storage well integrity management-

Contain the gas with in the system

Verify its containment

- Life cycle of a well
 - Design
 - Construction
 - Commissioning
 - Operations
 - Maintenance
 - Abandonment
 - Procedures and training

© 2015 American Petroleum Institute. All rights reserved. Other use is prohibited without express written permission.

1. Storage Well Risk Assessment

- Risk management program has 3 components:
 - Physical plant design, processes and human factors
- Assessment includes:
 - Data collection, hazard and threat identification, likelihood of occurrence estimation, consequence severity determination, and periodic review and reassessment
 - Appendix 3 threats and hazards
 - Appendix 4 preventative, mitigative and monitoring practices
- Basis for:
 - Developing integrity demonstration, verification and monitoring tasks
 - Frequency of monitoring tasks
- Incorporate new procedures, practices and technology as appropriate

Storage Well Risk Assessment (cont.)

- Concepts to keep in mind:
 - Many potential hazards and threats- need to identify and manage
 - Interaction between threats
 - Many preventative and mitigative (P&M) measures to manage identified hazards and threats- some have very specific applicability
 - Issue of time
 - Age is not synonymous with threat
 - Issue- attributes and environment the well is in
 - Magnitude and type of exposure to downhole and surface threats
 - Threats can change over time

Diverse variety of potential threats

Diverse variety of preventative & mitigative tools

No one P&M measure will address all threats

2. Foundation for Integrity Management

- Operators represent large percentage of US storage assets with decades of experience
- Reviewed past industry incidents to incorporate lessons learned
- Reviewed Canadian and European storage standards
- Reviewed other consensus standards on well design, construction and operations

3. Storage Well Design Factors

- Well design factors (wellhead, casing, cement, etc.)
 - Design factors for casing
 - API 5C3 bulletin includes a 12.5 % safety factor
 - Higher safety factor when designed for stimulation treatment after drilling
 - Ex. 5.5" J55 15.5# = 4,810 psi yield strength in 1,200 psi MAOP field
 - Zonal isolation is achieved by combinations of casing (i.e. surface, intermediate & production) and cement
 - Reference many industry standards
 - Ex. API RP 5A3, API RP 5C1, API TR 5C3, API Spec 5CT, API 10A, ASTM C 150/C 150M, and others
 - Threaded connections engineered for mechanical loads while providing a seal
 - Make-up per API 5CT, thread compound per API 5A3
 - Permits replacement of sections of non-cemented casing
 - Internal coatings generally not beneficial

Emergency Shutdown Valves

- Detailed review in Appendix 6
 - Subgroup reviewed technology, experience and pros & cons
 - Use since 1960's for higher risk storage wells, e.g. near homes or roads
- Types:
 - Surface safety valves (SSV)
 - Subsurface safety valves (SSSV)
- Estimated 500-900 storage wells have SSSVs
- Key ESV observations:
 - 1. Physical barrier that require specific set of conditions to activate
 - 2. Can reduce the consequences of an event by minimizing duration and impact
 - 3. Location of valve determines the risk reduction
 - Increases the number of well re-entries, blockages, and malfunctions which erode the risk reduction benefits
 - 5. Mitigation with 2 or more passive physical barriers (e.g. casing with cement) have comparable or better safety rates and are inherently more reliable

Emergency Shutdown Valves (cont.)

- Recommendations
 - Support, develop and implement risk-based integrity management plans
 - ESV are a specific tool for a specific problem, not a tool applicable to all threats
 - Industry align with PHMSA's Storage Advisory
 - Periodic function tests for all ESV systems and repair deficiencies
 - Evaluate the need on new, removed, or replaced tubing strings or production casing using risk assessment aligning with API 1171
 - Where not installed, used risk assessment for decisions on inspection frequencies and incident mitigation criteria

4. Storage Well Operations

- Well integrity evaluation, verification & monitoring
 - Covers every storage well and 3rd party wells that penetrate the storage reservoir or buffer zone
 - Risk assessment determines tasks and frequency
 - Discusses tubular monitoring and downhole evaluation tools
- Site security and emergency response
 - Site specific plans
 - Incident response drills

Storage Well Operations (cont.)

- Procedures and training
 - Align existing procedures with API 1171 and expand and develop new processes and procedures to be in conformance with API 1171
 - Expand training
 - Management of change
 - Record keeping
- Total API 1171 implementation
 - Estimate 7-10 years to reach full conformance with API 1171 and evaluate the mechanical integrity of each active well as per the high standards of API 1171

Thank you

